CO2 heat pumps applied to modern electric buses
Michael Sonnekalb (Konvekta)

webinar, June 29th 2020
Different heat pump systems

Direct system air to air
• highest efficiency
• lowest safety level
• complex refrigerant circuit

CO2 heat pumps applied to modern electric buses
Different heat pump systems

Indirect system air to water

- lower efficiency
- higher safety level
- complex water circuit

![Diagram of CO₂ heat pump system]

CO₂ heat pumps applied to modern electric buses
Different heat pump systems

Double indirect system water to water

- lowest efficiency
- highest safety level
- complex water circuits
- most compact refrigerant circuit
- lowest refrigerant charge

double indirect system
Different heat pump systems

Simulation results

- Using compressor polynoms (EN 12900) from Bitzer
- Constant UA-values for all HX
- Constant pressure losses in lines and HX 50 kPa
- 2000 m³/h air inner HX
- 7300 m³/h air outer HX
- 2000 ltr./h water

Heating demand

- 11665 W
- 9203 W
- 6740 W
Different heat pump systems

Simulation results

- Using compressor polynomials (EN 12900) from Bitzer
- Constant UA-values for all HX
- Constant pressure losses in lines and HX at 50 kPa
- 2000 m³/h air inner HX
- 7300 m³/h air outer HX
- 2000 ltr./h water

Simulation results:

- Cooling demand:
 - 9303 W for direct CO₂
 - 11025 W for indirect CO₂
 - 11103 W for direct propane
 - 11103 W for indirect propane
Konvekta UL500 CO2 heat pump

- high efficiency
- natural refrigerant R744 / CO₂
- combines direct system air-to-air heat pump with indirect system heat transfer fluid for remote heating and cooling (driver) and waste heat collection
Konvekta UL500 CO2 heat pump system

- high efficiency
- natural refrigerant R744 / CO₂
- combines direct system air-to-air heat pump with indirect system heat transfer fluid for remote heating and cooling (driver) and waste heat collection
- separate HX-tubes and lines for heating and cooling circuit
- fast switching between both modes possible
Konvekta UL500 CO2 heat pump system

- Heating mode
Konvekta UL500 CO2 heat pump system

- Cooling mode
Konvekta CO2 heat pump – 1st and 2nd generation

1st generation
- Built up in 2012 (EURO championship in Poland)
- Direct system air-to-air heat pump with cold and hot water supply
- Using same HX-tubes for heating and cooling
- Using a reversing valve

2nd generation
- Change in 2015
- Change of the compressor type
- Direct system air-to-air heat pump with cold and hot water supply
- Using separate HX-tubes for heating and cooling
- Using not a reversing valve but fast switching solenoid valves

- Urban transport Klagenfurt STW 8,9m Solaris
 2 city tours of 100 km per day with recharging between the tours and over night

- Heating
 Hot water is supplied to convectors and to the driver's HVAC module.
 Hot air is supplied to the air ducts in the roof.

- Cooling
 Cold water is supplied to cool electric components and to the driver's HVAC module.
 Cold air is supplied to the air ducts in the roof.
Konvekta CO2 heat pump – 2nd generation SOP in 2019

• 2nd generation
 – Tested since in 2015
 ♦ Climatic chamber
 ♦ Field tests in public transport
 ♦ Oem winter test in Sweden
 ♦ Oem summer test in Spain
 – Tests with 4 compressor types of different manufacturers
 – Tests with frequency inverter
 – SOP in 2019 with 2 oems and 2 different compressor manufacturers
Buses equipped with CO2 heat pump

- **Diesel buses with CO2 air condition**: 90
- **Electric buses with CO2 heat pump**: 260

Cities with CO2 heat pump applications

<table>
<thead>
<tr>
<th>City/Region</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aachen</td>
<td>7</td>
</tr>
<tr>
<td>Berlin</td>
<td>116</td>
</tr>
<tr>
<td>Hamburg</td>
<td>34</td>
</tr>
<tr>
<td>Hannover</td>
<td>4</td>
</tr>
<tr>
<td>Heilbronn</td>
<td>1</td>
</tr>
<tr>
<td>Jena</td>
<td>3</td>
</tr>
<tr>
<td>Köln/Koblenz/Wuppertal</td>
<td>3</td>
</tr>
<tr>
<td>Lübeck</td>
<td>6</td>
</tr>
<tr>
<td>Mannheim/Heidelberg</td>
<td>3</td>
</tr>
<tr>
<td>Nürnberg/Fürth</td>
<td>8</td>
</tr>
<tr>
<td>Offenbach</td>
<td>2</td>
</tr>
<tr>
<td>Reutlingen/Tübingen</td>
<td>5</td>
</tr>
<tr>
<td>Schwerin</td>
<td>3</td>
</tr>
<tr>
<td>Wiesbaden</td>
<td>10</td>
</tr>
<tr>
<td>France</td>
<td>3</td>
</tr>
<tr>
<td>Italy</td>
<td>10</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>14</td>
</tr>
<tr>
<td>Norway</td>
<td>6</td>
</tr>
<tr>
<td>Austria</td>
<td>1</td>
</tr>
<tr>
<td>Sweden</td>
<td>16</td>
</tr>
<tr>
<td>Switzerland</td>
<td>4</td>
</tr>
<tr>
<td>Czechia</td>
<td>2</td>
</tr>
<tr>
<td>Austria</td>
<td>1</td>
</tr>
<tr>
<td>Sweden</td>
<td>16</td>
</tr>
<tr>
<td>Switzerland</td>
<td>4</td>
</tr>
<tr>
<td>Czechia</td>
<td>2</td>
</tr>
</tbody>
</table>

Note: CO2 heat pumps applied to modern electric buses
Electric bus heat up measurements

after 15 minutes:
- supply air 16°C
- return air 8,5 °C
- supply air driver 30 °C

after 30 minutes:
- supply air 20°C
- return air 17,5 °C
- supply air driver 43 °C
HVAC energy consumption of a city bus (simulated)

Darmstadt, 12m electric city bus with air condition and Diesel heater, 11 km/h average speed, 19 hours operation
HVAC energy consumption of a city bus (simulated)

Darmstadt, 12m electric city bus with air condition and electric heater (AC+PTC) versus reversible heat pump (AC+HP), 11 km/h average speed, 19 hours operation.
michaelsonnekalb@konvekta.com