Evaluation of Natural Refrigerants for HVAC Systems in Railway Vehicles

Lutz Boeck

Eurammon-Symposium, 29.06.2020

- Introduction
- Comparison of Technologies and Refrigerants
- Railway-specific requirements for risk analysis for refrigerants
- Summary and Outlook

Introduction – Parameter of typical Rail HVAC System

• Mixed air system, Direct evaporation, single-channel system

Cooling Capacity: 12 kW bis 60 kW (80 kW)

Heating Capacity: 10 kW bis 60 kW

• Height: 220 mm to 1200 mm

• Length: up to 5500 mm

Weight: 450 kg to 1300 kg

Refrigerants EU: R134a / R407C / R729 / R744

• **Life span:** 30 years with ca. 6000 h/a operation

Versions: <u>Compact systems</u>, Split systems, cabinet systems

• Arrangement: <u>Roof area</u>, Underfloor, Cabinet inside the vehicle

Always compromise of: Weight

▲ Energy consumption

★ Performance / Operational limit

Introduction – F-Gas Regulation and Consequences

Regulation – present and prospective

• Since 2015 valid F-Gas Regulation EG/517/2014. Replacement of EG/842/2006

- No ban of fluoridate refrigerant, but Phase-Down lead to Practical Phase-out to HFC's (shortfall of these refrigerants on market)
- Increased Requires to Natural Refrigerants are already asked from Customers and Operators as Options or strong demands currently from: DB, SBB, ÖBB, NSB

Starting by 2020 (!):
 Operators ask on strong demands new Car-HVAC
 -Concepts exclusive natural Refrigerants (DB,...)

 Prospective Steps or Rules are to expect in respect of the Environment-Protection.....

Quo vadis – on refrigerant? Synthetic Natural refrigerant refrigerant **R744** R134a CO₂ HFC **R729** R513A / R450A Air (GWP > 150)R290 / R1270 HC R1234vf HFO ...b, c, d alternatives?

Which technology will be the future?

2015

2020

- Introduction
- Comparison of Technologies and Refrigerants
- Railway-specific requirements for risk analysis for refrigerants
- Summary and Outlook

General Comparison of Technologies and Refrigerants

Vapor-Compression Process

HFC, HFO Refrigerants & Blends

- Compact units
- Hermetic systems
- Various methods for capacity control
- Accepted COP
- Large component base
- Long-term availability
- Breakdown products in atmosphere
- HFO flammable MAK value 200 ppm
- Price level of refrigerants

Natural Refrigerants – R744, HC, H₂O

- CO₂
- Operating pressure
- COP in cooling mode (worst vs. HFC)
- Heat pump operation
- Additional Safety features required
- Limited component base
- R290 / R1270
- Explosive
- COP in cooling mode comparable vs.
 HFC, Heat pump operation better than HFC
- Medium component base
- H₂O
- Not available for Railway sector

Gas-Compression Process

Natural Refrigerant - Air

- Serial application in the ICE3 of Deutsche Bahn (BR403/406)
- Easy Maintenance and Repair
- Low COP < 1, Consequences for Energy consumption and On-board power supply
- Very limited component base
- Price level of components (TM, HX)

Other Processes

Absorption

- attractive for waste heat applications
- Dimensions and Weight
- Efficiency

Thermoelectric effect
Magnetocaloric effect
Thermoacoustic effect

- Low efficiency
- Basic research

Potential of Refrigerants to Rolling Stock Applications 1/2

	Attribute	Ecology	Thermo- dynamic	Chemistry	Physiology	Commercial aspects to HVAC business
Criteria Details	preferred attribute ->	low GWP- value (<10) ODP = 0	high specific cooling power at low pressure level	stable azeotrop behaviour in cooling circuit, no environmental risk at release	no risk on toxication, or other health risk	availability, price level, distribution net, restrictions by law
	R-134a (HFKW)	GWP = 1430 ODP = 0			MAK=1000	Availability critical – no long term solution, wide range on applications at railway, synth. Refrigerant – cat. A1
ant .	R-1234yf (HFO)	GWP = 5 ODP = 0	comparable to R-134a	at temperature > 250°C → toxic HF-generation, persistent Tri-Fluor Acid in atmosphere	MAK = 200	Replacement of R-134a e.g. automotive industry, ongoing discussion about environmental impact of TFA generation to air /ground-water impact to future law open synth. Refrigerant – cat. A2L – mildly flammable
Refrigerant	R-290 (Propane)	GWP = 5 ODP = 0	comparable to R-134a, Heat pump appl. up to 20°C	•	MAK=1000	Strong increasing application in stationary business, stable price level to expect, risk assessment at acceptable level is ongoing; natural refrigerant – cat. A3 – flammable, explosive
	R-729 (Air)	GWP = 0 ODP = 0	Small heat capacity, low COP	•	•	Standard application on air craft; Highest invest cost, high energy consumption (Peak) natural refrigerant – cat. A1
	R-744 (CO2)	GWP = 1 ODP = 0	Max. pressure up to 140 bar	•	MAK=5000	Higher invest cost; high pressure level, maintenance modification due to pressure level; natural refrigerant — cat. A1

Potential of Refrigerants to Rolling Stock Applications 2/2

Refrig-	System weight	Energy efficiency COP	Complexity	GWP Sustainability	Flamm- ability		Expected safety level for operation	Total system costs	Rating – Σ
erant	Space Envelope	Heating Cooling	Serviceability	Lifespan	Toxicity	Suitability			
R134a	0	0 0	0 0	 	0 0	0	0	0	-4
R1234yf	0	0	0 -	0 -	-	0	0	0	-4
R290 (Propane)	0	+ 0	0 -	0 0	 0	0	0	0	-2
R729 (Air)		+	- +	0	+++	0	0		-3
R744 (CO ₂)	-	+	- -	0	+ 0	0	0	-	-3

- Introduction
- Comparison of Technologies and Refrigerants
- Railway-specific requirements for risk analysis for refrigerants
- Summary and Outlook

- ✓ No Refrigerant shows ideal properties
- ✓ The property "flammability" of the refrigerant does not "a priori" represent an exclusion criterion
- ✓ Risks in rail operations have to be analyzed and mitigated according to CSM guideline EU/402/2013 by
 - Application of regulations/standards and/or
 - Consideration of similarities to reference systems and/or
 - Risk analysis
- TARGET: Acceptable Risk Level comparable Safety Level as today
- Assessment according to the railway-specific safety standard
 - → EN 50126-1: Railway Applications -The Specification and Demonstration of Reliability, Availability, Maintainability and Safety

Identification of risks in the life cycle for **in-service operation**, **standstill**, **maintenance** and **repair** as well as for **accidents** and **foreseeable misuse**:

- Assessment of the severity of an accident for people and infrastructure
- Frequency of the event

Additional for CO₂ and flammable refrigerants

- Leak types and frequencies
- Concentration as a function of the type of leak, the location and the ventilation

Additional for flammable refrigerants

Ignition source analysis and Evaluation

- Determination of risks and frequencies in operation including foreseeable misuse during life cycle
- Validation of actual risks from operational experience
- Grouping of cases into an acceptance criterion

Akzept	anzkriterium Vorgesc	hlagen												
			Häufigkeit / Anlage / Jahr	<bahnklima- anlagen</bahnklima- 										
Frequency of event	häufig	Frequent	>10 ⁻³	N.A.	N.A.	unerwünscht	untragbar	untragbar	untragbar	untragbar				
	wahrscheinlich	Probable	≤10 ⁻³	N.A.	N.A.	tolerabel	unerwünscht	untragbar	untragbar	untragbar				
	gelegentlich	Occasional	≤10 ⁻⁴	N.A.	N.A.	tolerabel	unerwünscht	unerwünscht	untragbar	untragbar				
	gering, selten	Remote, rare	≤10 ⁻⁵	N.A.	N.A.	vernachlässigbar	tolerabel	unerwünscht	unerwünscht	untragbar				
	unwahrscheinlich	Improbable	≤ 10 ⁻⁶	N.A.	N.A.	vernachlässigbar	vernachlässigbar	tolerabel	unerwünscht	untragbar				
	sehr unwahrscheinlich	very unlikely	≤10 ⁻⁷	N.A.	N.A.	vernachlässigbar	vernachlässigbar	vernachlässigbar	tolerabel	unerwünsch				
	nahezu unmöglich	Almost impossible	≤10 ⁻⁸	Ä.	O A.	A. (N.A.	N,	N.A.	N.A.				
	HAZOP Severity Ranking Scale>			7	4	3	6	1	8	9				
Values and key wording under evaluation by refrigeration industry			No damage / injury	Minor (minor injuries; treatment on site)	Marginal (several light injuries)	Critical (several injuries or few severe injuries)	Catastrophic (several severe injuries or less than three fatalities)							
Risiko-Akzeptanzkriterien nach EN 50126-1, Tabelle C.9					un- wesentlich	unbedeutend S5	geringfügig S4	kritisch S3	katastrophal S2	katastropha				
Risiko-Al					wesentlich S5 S4 S3 S2 S1									
Risiko-Al		vernachlässigbar Das Risiko ist ohne Zustimmung der Bahnunte				301	,							
Risiko-Al	vernachlässigbar	Das Risiko ist ohr	e Zustimmung de	r Bahnunternehmen a	akzeptabel			Das Risiko kann unter der Voraussetzung angemessener Kontrollen (z. 8. Instandhaltungsverfahren oder -regeln) und mit Zustimmung der verantwortlichen Bahnunternehmen toleriert und akzeptiert werden.						
Risiko-A	vernachlässigbar tolerabel	Das Risiko kann u	inter der Vorausse		•	ndhaltungsverfahren	oder -regeln) und m	it Zustimmung der ve	erantwortlichen Bahr	nunternehmen				

- Introduction
- Comparison of Technologies and Refrigerants
- Railway-specific requirements for risk analysis for refrigerants
- Summary and Outlook

Summary and Outlook

Criteria refrigerant	Weight	Dimensions	Energy consumption	Application
R134a (with HP)	100	100	100	All type of trains All climatic zones
R1234yf (with HP)	100 – 105	100 - 105	100	All type of trains All climatic zones
R290 (with HP)	100 – 105	100 - 105	70 – 100	All type of trains All climatic zones
CO ₂ * (with HP)	120 – 130	100 – 120 dimen. HX	80 – 120	Except Metro Except hot/very hot zones
Air cycle* (with HP)	100 – 110	100 -120 dimen. HX / piping	105 – 130	All type of trains All climatic zones

Summary and Outlook

- ✓ F-gas regulation also effecting the rail sector
- ✓ **Synthetic refrigerants** (established and new up-coming refrigerants) offer solutions today R1234yf seems uncertain for rail operators in the long term (risks with regard to environmental impact and toxicity)
- ✓ **Natural refrigerants** not yet in ongoing projects / commercial service
- ✓ CO₂ and AIR available, but not optimal due to costs, weight, energy efficiency on-board electrical system, single source with suppliers and flexibility
- ✓ HC: Proof of the same level of safety when using flammable refrigerants as with state of art systems
- ✓ In the future stronger differentiation into the different refrigerants / technologies depending on the end customer and operating conditions

Summary and Outlook

Flammable substances are no longer excluded a priori

- Hydrogen as an source for fuel cells in rail operations
- Li-Ion batteries as an energy source for battery-powered trains in rail operations
- Use of HFO / HC in discussion
- HC established in stationary refrigeration and A/C technology

Hydrocarbons enable

- Thermodynamically comparable process such as HFC / HFO (pressure level, technology → existing experience can be used)
- Comparable system design / application limits
- Maintaining the current electrical system architecture (installation space, weight, technology)
- Same security can be achieved as with conventional systems

Lutz BOECK

Faiveley Transport Leipzig GmbH & Co. KG

Industriestrasse 60 - D 04435 Schkeuditz

lutz.boeck@Wabtec.com

