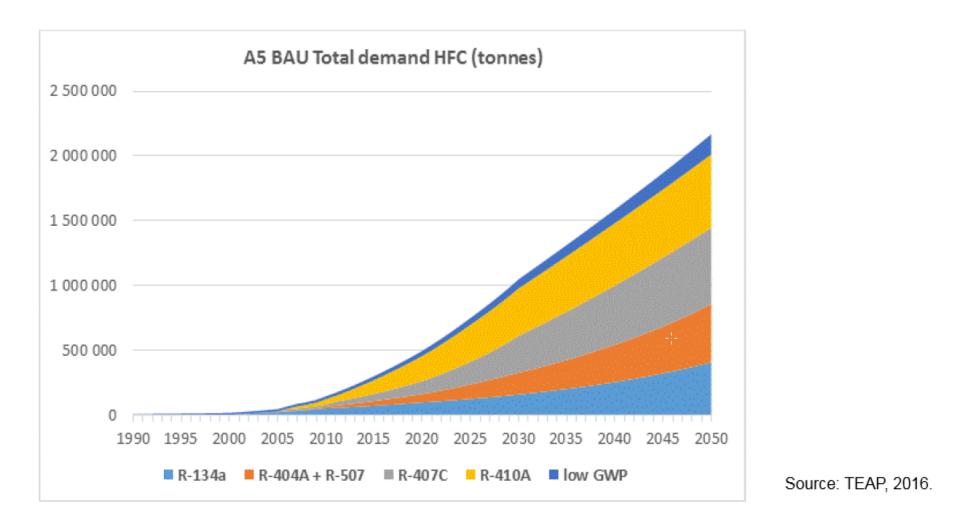
CHILLVENTA

Alternative refrigerants Trends in Developing Countries

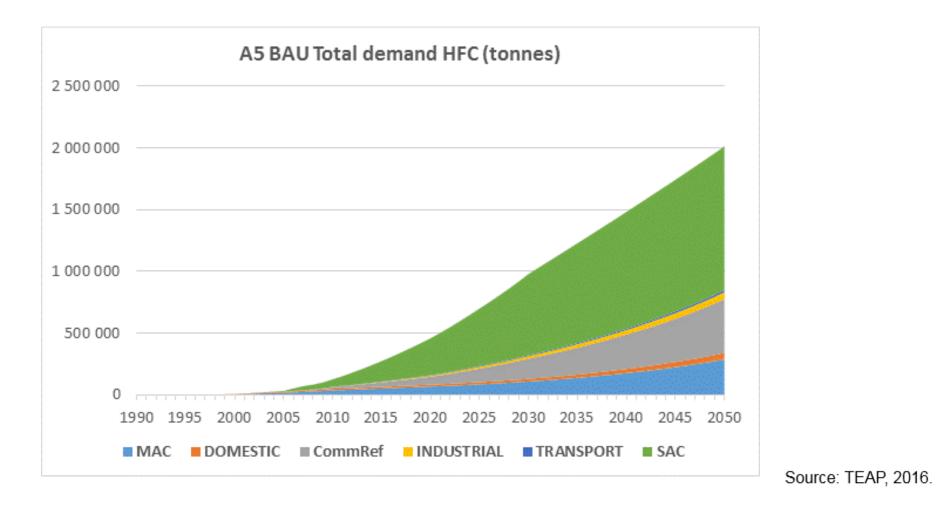
by

Stephan Sicars United Nations Industrial Development Organization

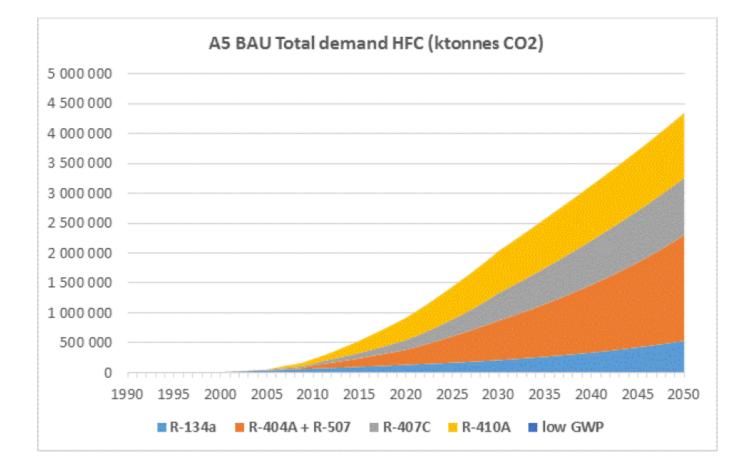

Nuremberg (Germany), 12th October 2016

Outline

- Trends on alternative refrigerants in Developing Countries
- Policy environment
- Use of natural refrigerants in Developing Countries
- Drivers and Barriers
- Montreal Protocol
- UNIDO's role on natural refrigerants
- Conclusions



Trends on alternative refrigerants in developing countries



Trends on alternative refrigerants in developing countries

Trends on alternative refrigerants in developing countries

Source: TEAP, 2016.

- The BAU scenario in developing countries: large growth in demand for high-GWP refrigerants R-404A, R-407C and R-410A (HFCs)
- Phase down HFCs: Critical to meet Paris climate goal
- HFCs considered to put under the Montreal Protocol
- Regulatory certainty
 - signal to industry
 - driver for technological development

Use of non-halogenated ("natural") refrigerants in developing countries

- Natural refrigerants widely used in domestic and industrial refrigeration as well as cold chain
- Growth is expected in
 - Commercial refrigeration
 - Supermarkets
 - Vending machines, display coolers, ...
 - Possibly larger scale AC (district cooling, extended chiller applications to replace PAC)
 - Market shares still small
- Growth further expected in a number of sectors

Use of natural refrigerants in developing countries - China

- Light-commercial
 - 400,000 HC stand alone cabinets
 - 322,000 HC ice cream freezers
 - 25,000 CO2 bottle coolers and vending machines
- Food stores
 - 8 CO2 stores
 - More than 15 CO2 hybrid stores planned
- Industrial Refrigeration
 - 30,000 end-users of NH3 systems
 - 34 CO2 cascade/secondary projects

Drivers and Barriers for use of natural refrigerants

- Main drivers
 - Regulatory requirements and disincentives
 - Environmental impact
 - Efficiency & reliability
 - Long term cost benefits

Drivers and Barriers for use of natural refrigerants

- Main barriers
 - Safety: Flammability, toxicity lead to cost and application disadvantages
 - Restrictive Standards (no or unfavorable safety & trade standards)
 - Higher investment costs for some HFC-free equipment
 - Need for a significant knowledge increment in installation/after-sales service
 - Risk awareness, risk mitigation and application limitations
 - Quality of workmanship and reliability
 - Effective restrictions to deny market access to insufficiently educated technicians
 - Sources of technical information differ from status quo (distribution, perceived reliability)
 - Limited promotion of advantages

- Funding mechanism Multilateral Fund / so far ~150 million \$/a
- 4 implementing agencies plus bilateral agencies
- UNIDO
 - Almost 40% of total MLF funding for HCFC phase-out
 - National plans; refrigeration; foam; policy & capacity; others
 - More than 1,300 projects completed
 - Reduction of 340 million tCO2e use p.a.
 - 1.4 USD/tCO2e use p.a.
 - OECD average effective carbon rate amounts to EUR 14.4 per tonne of CO2

UNIDO's role on natural refrigerants

- Main objective
 - Innovation
 - Safety
- Projects
 - Demonstration activities
 - Conversions of production lines
 - Service sector interventions

- PRAHA I project (Bahrein, Kuwait, KSA, UAE)
 - Manufacture & test of purpose built prototypes in A/C industry to understand behavior of alternatives in high ambient temperature conditions (low GWP) a tool to assist in the decision making
 - Main finding: some low-GWP alternatives have similar or even better cooling capacity and energy efficiency performance than baseline refrigerants Engineering is crucial to reach optimum design and performance
 - Upcoming PRAHA II: Building local design capacities + Developing comprehensive Risk Assessment

Innovation and demonstration activities

- Funds mobilization initiative in Viet Nam and The Gambia
 - Funding sources: GEF + co-financing from governments, beneficiaries, technology providers, local development banks and UNIDO
 - The projects consist of Policy and regulatory support; Technology transfer (Low GWP and energy efficiency); and Awareness raising

- Algeria (split and window AC): Conversion of one line to two refrigerants depending on application/size (likely R-290 and R-32)
- Bahrain (split AC):

Conversion of one line to two refrigerants depending on application/size (likely R-290 and R-32)

• Brazil:

conversion of 3 enterprises likely to R-290

- Pakistan:
 Conversion of one line to R-290
- Tunisia/Argentina (retail sector): Conversion of two supermarkets to transcritical CO2 with R-290 subcooling
- Jordan (retail sector):

Conversion of one supermarket to CO2 transcritical

China

- UNIDO conversion projects in China HCFC-22 to R-290
 - Demonstration: Midea (split) and GMCC (compressor)
 - HPMP stage I (2011 2016): 18 AC mini split lines; 3 compressor lines; capacity 6 million
 - HPMP stage II (2016 2021): AC mini split & some HPWP (CO2), expected approval 12/2016: 25 assembly lines; 4 compressor lines
 - Market access remains challenging
- Also interesting
 - Demonstration on NH3/CO2: Yantai Moon Group (UNDP)
 - Large-scale cold storage / low temperature industrial applications

- Currently HCFC-22 replacement activities
- Already strong tendency towards natural refrigerants
- HFC replacement (conversion/demonstration) projects likely to commence soon (HFC amendment)
- Development and introduction of natural refrigerants face important challenges
- Still work on innovation, safety, service issues (flammability & toxicity) – difficult but manageable
- Climate benefits extremely cost efficient

Thank you for your attention!

Nuremberg (Germany), 12th October, 2016 Page 19

Table 6-7: Current and future refrigerant demand for (refrigerant) ODS alternatives (BAU scenario) for the period 2010-2050 in Article 5 Parties (tonnes)

		2010	2015	2020	2025	2030
A5 BAU	HFC-134a	54,393	74,524	100,162	127,267	161,107
	R-404A + R-507	13,085	36,404	63,963	111,927	167,690
	R-407C	16,543	55,278	101,216	174,433	285,500
	R-410A	40,975	106,661	192,770	284,682	364,845
	Low GWP	22,430	29,318	39,132	51,975	69,915
	Total	147,426	302,185	497,243	750,284	1,049,057
		2030	2035	2040	2045	2050
A5 BAU	R134a	161,107	204,027	257,413	324,537	409,494
	R404A + R507	167,690	223,579	287,745	361,077	449,614
	R407C	285,500	372,998	457,406	532,391	587,361
	R410A	364,845	427,266	479,588	524,488	566,180
	Low GWP	69,915	85,957	104,807	127,577	155,209
	Total	1,049,057	1,313,827	1,586,959	1,870,070	2,167,858

Source: TEAP, 2016.

Table 6-8: Current and future refrigerant demand for (refrigerant) ODS alternatives (BAU scenario) for the period 2010-2050 in Article 5 Parties (ktonnes CO₂-eq.)

		2010	2015	2020	2025	2030
A5 BAU	HFC-134a	70,712	96,880	130,210	165,447	209,440
	R-404A + R-507	51,584	143,511	252,168	441,229	661,025
	R-407C	26,799	89,550	163,971	282,581	462,511
	R-410A	78,671	204,789	370,118	546,589	700,502
	Low GWP	62	115	203	314	469
	Total	227,828	534,845	916,670	1,436,160	2,033,947
		2030	2035	2040	2045	2050
	HFC-134a	2030 209,440	2035 265,234	2040 334,637	2045 421,897	2050 532,343
	HFC-134a R-404A + R-507					
		209,440	265,234	334,637	421,897	532,343
A5 BAU	R-404A + R-507	209,440 661,025	265,234 881,313	334,637 1,134,195	421,897 1,423,289	532,343 1,772,283
A5 BAU	R-404A + R-507 R-407C	209,440 661,025 462,511	265,234 881,313 604,256	334,637 1,134,195 740,997	421,897 1,423,289 862,474	532,343 1,772,283 951,525

Source: TEAP, 2016.

eurammon is available as your sparring partner at any time when it comes to questions about refrigeration with natural refrigerants.

Contact: Dr. Karin Jahn Lyoner Straße 18 60528 Frankfurt/Main Germany Phone: +49 (0)69 6603-1277 Fax: +49 (0)69 6603-2276 E-Mail: <u>karin.jahn@eurammon.com</u>